
1

Evolution of White-Box Cryptography: 
From Table-Based Implementations to Recent Designs

Michael J. Wiener

2016 August 14

2

Outline

▪ Why do we bother with white-box cryptography (WBC)?
▪ The origins of WBC
▪ Attacks and countermeasures

▪ BGE, DFA, DCA
▪ New generations of WBC designs
▪ Research needed

▪ Theory of security
▪ Indistinguishability obfuscation
▪ White-box friendly ciphers

▪ Other directions for software security
▪ Trusted execution environments
▪ Homomorphic encryption

▪ Conclusions

3

What is White-Box Cryptography?

▪ In industry, we use a pragmatic definition of WBC:

White-box cryptography is the design of software implementations of
cryptographic algorithms that resist attack.

▪ What is an attack? Some possibilities:
▪ We know it when we see it.
▪ Anything that disrupts business.
▪ Anything that creates a viable business for the attackers.

4

Main Attacks on White-Box Cryptography

- WBC tries to keep keys hidden while
encrypting with them.

- Attackers try to extract these keys.

WBC
implementation

Key

Code lifting - Attackers try to lift the entire
implementation instead of just
extracting a key

- We use techniques to lock software
to a given platform.

Key
extraction

WBC
implementation copy

extract

5

A Misconception about White-Box Cryptography

▪ Early in its history, there was a misconception that WBC competes with traditional
cryptography.

▪ If WBC has shortcomings, we cannot just go back to traditional cryptography.
▪ We have to implement algorithms securely somehow.

Modern cryptography:
▪ Tremendous advances:

▪ AES
▪ Public key
▪ Secure protocols

▪ All just theoretical before we
implement in hardware or
software

WBC:
▪ Complements traditional

cryptography
▪ In theory, AES takes trillions

of years to break
▪ Without WBC, reading an

AES key out of memory may
only take seconds

6

Is WBC Really Needed?

▪ If WBC is important, how have we got along without it?

▪ In reality, WBC is in widespread use in many applications.
▪ Details are kept secret.

▪ If your smart phone only contains trusted software and is only ever under the
physical control of trustworthy people, then you don’t need WBC.

▪ However, if you live on earth where we have attackers and
malware, you may benefit from using WBC.

7

A Common Criticism of WBC

The claim:

“WBC is less secure
than traditional (black-
box) cryptography.”

What they are
comparing:

We have limited control over the attacker’s powers.

The work we do on WBC is a reflection of the reality of attacker
powers. We cannot wish away software vulnerability.

WBC implementations
Attackers who have
full software access

Unprotected black-
box cryptographic
implementations

Attackers with no
side-channel access
or software access

+

+

vs.

8

Early WBC Research

Pioneering work on WBC was done at Cloakware (later acquired by
Irdeto) by Chow et al. for AES [CEJvO] and DES [CEJvO2].

This work began with a simple observation:

Table

Plaintext

Ciphertext

For a given encryption key, building a table
mapping all input data (plaintext) to
output data (ciphertext) is
- Hopelessly impractical (for AES, 2128

entries)
- But secure against key extraction!

This led to the idea of using many small
tables instead of one big one.

9

Implementing AES with Tables

For a complete tutorial on the first AES design, see James Muir’s paper
[M13].

We start with an insecure table-based AES implementation and look at
how Chow et al. modified it.

3 of the 4 AES steps are quite straightforward.

ShiftRows

Just moves
bytes
around. No
tables
needed.

AddRoundKey

x

x ⊕ key byte

SubBytes

S-box

10

Fourth AES Step: MixColumns

MixColumns involves expanding 8 bits to 32 bits and XORing four 32-bit
values.

• There are 4 different expansions (Ty0, Ty1, Ty2, Ty3).

XORing is done 4 bits at a time to control table size.

Ty0

8 bits

32 bits

Ty1

8 bits

32 bits

Ty2

8 bits

32 bits

Ty3

8 bits

32 bits

Network of many 4-bit XOR tables

32 bits

XOR

4 bits

4 bits

4 bits

11

Chow et Al. Modifications

Table Composition

Whenever one
table feeds
directly into
another table,
replace the two
tables with one
composed table.

Random Bijections

Compose
concatenated 4-
bit random
bijections (a and
b) that cancel.

AddRoundKey

S-box
T-box

T-box

Ty
Ty o T-box

XOR

a

XOR

a-1 b-1

Ty0 o T-box Ty1 o T-box
Ty0 o T-box

b

Ty1 o T-box

12

Narrow Definition of WBC

▪ Many people consider WBC to mean table-based designs similar to the original
Chow et al. AES and DES implementations.
▪ We take a much broader view.

▪ WBC is any attempt to design attack-resistant cryptographic software. E.g.,
▪ Different types of tables
▪ Possibly no tables at all
▪ Protections using software security methods
▪ …

13

Broader Definition of WBC

Software Protection Cryptography

White-Box  
Cryptography
- Protecting

cryptographi
c software

Preventing
- Software

modification
- Reverse-

engineering
- …

- Data privacy
- Authentication
- Access control
- Identity privacy
- …

14

A Note on WBC Efficiency

Security is very important, but hard to measure.

Security tends to get focus after a successful attack in the field.

Until then, size and speed concerns dominate.

WBC software vs. unprotected cryptographic software:

10x bigger and slower

100x bigger and slower

1000x bigger and
slower

Usually acceptable

Sometimes acceptable

Almost always
unacceptable

All security measures must give enough benefit to justify their
costs.

15

1st Generation of WBC Broken

▪ Chow et al. made important contributions.
▪ But they gave us just the 1st generation of WBC.
▪ This is good because this 1st generation has been thoroughly broken.

▪ Billet et al. found the first attack [BGE] on the published white-box AES [CEJvO].
They were able to extract the AES key.

16

Further Attacks on the First White-Box Implementations

We investigated each white-box table further:

The break was thorough and we later developed countermeasures for
new white-box implementations.

The details of this 2nd generation of white-box AES and triple-DES were
never published.

Table  
= f ◦ g ◦ h

We were able to extract
all table components up to
the information theoretic
bound.

Extract  
f, g, h

Each table
comprises multiple
operations

17

Academic Criticism of WBC

Barak et al. proved:

There exist programs that
cannot be protected
[BGIRSVY].

In the practical world we do not need to protect all programs.

It is clearly possible to make the life of hackers and reverse-engineers
harder.

Some people
conclude:

WBC cannot work.  
Not true.

18

The Latest WBC Attacks

▪ The second generation of WBC designs resisted attacks like that of Billet et al.
[BGE], but fell to two new attacks borrowed from hardware side channel work.
▪ Differential Fault Analysis (DFA)
▪ Differential Computation Analysis (DCA)

▪ We needed to move on to a third generation of WBC designs.

19

Differential Fault Analysis (DFA)

DFA was originally an attack on hardware crypto implementations
[BS97].

But it works on white-box implementations as well.

An example showing part of the final stage of DES:

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
S

6 key bits
6

4

4

ciphertext

Desired fault injection point
Attacker first runs code and records
ciphertext.

Then injects fault and records faulty
ciphertext.

Only certain combinations of 6 key bits are
consistent with the results.

Rinse and repeat until entire key is known.

20

DFA Countermeasures

White-Box DFA Attack Requirements Countermeasures

Ability to inject the right types of
faults

• Redundant computations to detect
faulty data

• Disguise redundancy with distinct data
transforms

• Corrupt ciphertext if redundant
computations do not match

Ability to make faults that affect just
a few bits

• Transformations on data with wide
scope

• Changing transformed data affects
many ‘original’ bits

Ability to view ciphertext • Apply data transformations to
ciphertextThis led to a 3rd generation of white-box AES and triple-

DES whose details were never published.

21

Differential Computation Analysis (DCA)

DCA [BHMT] is based on Differential Power Analysis (DPA) [KJJ99].

DPA extracts keys from physical crypto implementations by examining power
usage.

An example (showing part of the final stage of DES):

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
S

6 key bits
6

4

4

ciphertext

Choose a guess of the 6 key bits.

Execute DES for many random plaintexts,
record ciphertext and power consumption
traces.

Compute one internal bit for each trace.

Average the 0-traces and 1-traces
separately.

If there is a non-random difference
between the averages, then the 6-bit key

Computable if we
know the 6 key
bits

22

Adapting DPA to the White-Box Environment

DPA uses power traces. DCA uses computation traces.

Computation traces can be
- Snapshots of memory during white-box execution
- Stack contents
- Table indexes
- Register contents
- Pointer values

With DCA, we look for correlations between the internal computed bit and
any part of the computation traces. Finding a correlation means the key
bits guess is right.

This attack is powerful because the attacker does not need to know in
advance which part of the computation traces will reveal a correlation.

23

DCA Countermeasures

White-Box DCA Attack Requirements Countermeasures

Existence of correlations between
white-box data representations and
the untransformed data

• Ensure no such correlations exist
• Requires a careful entangling of

intermediate data throughout the
software

Ability to view ciphertext • Apply data transformations to
ciphertext

Some countermeasures in our 3rd generation white-box
implementations resisted DCA.

However, we have a 4th generation with improved
resistance.

An important part of a security strategy is continuous
adaptation to limit the damage from attacks.

24

Research Advances Needed

▪ We have had success creating attack-resistant white-box
software.
▪ But we lack a theory that allows us to link WBC security to a known

hard problem.
▪ Perhaps indistinguishability obfuscation (iO) will be a useful

research path.
▪ A big part of the challenge is the need for size and speed

efficiency.
▪ We welcome new research advances in WBC, but do not have

the luxury of time to wait for them.
▪ The need for secure software today is great.

25

Other Cryptosystems

So far we have focused on AES and DES.

But there are many other cryptographic algorithms:
- RSA
- Elliptic Curves
- Hash functions
- Message authentication codes
- …

The rich mathematical structure of most public-key algorithms
makes them particularly challenging to protect in software.

I will not say more here about these algorithms other than to say
that each presents unique white-box challenges and we have
designs for each.

26

Fixed-Key and Variable-Key WBC

▪ Those familiar with the original WBC papers tend to think in terms of “fixed-key”
software designs
▪ Fixed-key means the cryptographic key is baked into the software.

▪ However, in many applications, we need “variable-key” designs
▪ Variable-key means the software takes a protected key as an input so that it can

operate with different keys at different times.
▪ We have fixed-key and variable-key versions of our WBC designs.

27

Leaving Tables Behind

The world knows white-box cryptography as table-based
implementations similar to the first published papers.

We are examining ways to retain the mathematical complexity of these
table-based designs, but without any tables – just code.

Tables Code

Tables stand out in
software.

White-box code blends better with other
parts of an application. It is better if
attackers cannot see where white-box
crypto begins and ends.

We seem to be at the limit
for the types of operations
we can compose with
tables.

We can better leverage growing research
into software protection.

An interesting side effect of table-free designs is that it has made it
easier to adapt to protecting new cryptosystems.

28

Custom Ciphers

▪ Coming up with AES was a world-wide effort.
▪ Designing your own cipher makes little sense from a black-box point of view.

▪ But perhaps there are ciphers that are easier to protect in a white-box
environment than AES is.
▪ “White-box friendly” ciphers

▪ Another potential advantage of custom ciphers is that it is hard to mount DFA or
DCA attacks against unknown ciphers.
▪ Frequent updates of the cipher could be a useful security measure.

▪ This is an active area of research.

29

Trusted Execution Environments

One of the available tools for improving
software security is a Trusted Execution
Environment (TEE).

TEEs use hardware to limit access to programs
and data during execution.

TEEs are an important part of software
security but are not perfect; we should still
protect the software they run.

For security, we limit TEE access to one or
more trusted software vendors.

Relentless pressure for openness leads to
opening TEE access and reducing its security
over time.

Main Processor
and Memory

TEE

Easy to
upgrade, more
vulnerable

Controlled access,
less vulnerable

30

Homomorphic Encryption

Homomorphic encryption (HE) is a great achievement of
modern cryptography.

It allows us to compute with encrypted data without
decrypting the data.

HE seems like it should be an important part of software
security.

Setting aside inefficiency, HE has some limitations.

31

Acting on HE-Computed Decisions

Acting on Decisions

We can compute a decision:

0 = customer did not approve
transaction
1 = customer approved transaction

But without the key, we cannot read
the bit to decide whether to send a
payment.

If the vulnerable software has the key,
this defeats the purpose of HE.

0 or 1,  
but which is it?

32

Homomorphic Encryption Exposing Computations

Exposing computations

HE hides data effectively, but it does not naturally hide the
computations being performed.

An attacker can see what computation is being performed and
potentially change it to a new computation.

It would be possible to get around this problem by creating an HE
virtual machine where instructions are encrypted. But this would
add another layer of inefficiency.

33

Conclusions

In our software-dominated world, the need for software protection is
unavoidable.

Encryption software is often the most security-critical part of an
application, and must be protected with some form of WBC.

We have had success preventing attacks such as DFA and DCA with our
latest generations of WBC designs, but research is needed.

Some pin their hopes on trusted execution environments and
homomorphic encryption, but they are unlikely to be complete
solutions.

34

References

[BGE] O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a White Box Implementation,” pp. 227-240, Selected Areas in Cryptography 2004,
Lecture Notes in Computer Science Vol. 3357, H. Handschuh and A. Hasan eds., Springer 2005.
[BGIRSVY] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. “On the (Im)possibility of Obfuscating Programs
(Extended Abstract),” pp. 1-18, Advances in Cryptology – Crypto 2001, Lecture Notes in Computer Science Vol. 2139, J. Kilian ed., Springer 2001.
[BHMT] J. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential Computation Analysis: Hiding Your White-Box Design is Not Enough,” Cryptology
ePrint Archive, Report 2015/753, https://eprint.iacr.org/2015/753, 2015.
[BS97] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,” pp. 513-525, Advances in Cryptology – Crypto ’97 Proceedings,
Lecture Notes in Computer Science Vol. 1294, , B. Kaliski, ed., Springer 1997.
[CEJvO] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, “White-Box Cryptography and an AES Implementation,” pp. 250-270, Selected Areas in
Cryptography 2002, Lecture Notes in Computer Science Vol. 2595, K. Nyberg and H. Heys eds., Springer 2003.
[CEJvO2] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, “A White-Box Cryptography DES Implementation for DRM Applications,” pp. 1-15, ACM
Workshop on Digital Rights Management 2002, Lecture Notes in Computer Science Vol. 2696, J. Feigenbaum ed., Springer 2003.
[K96] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems,” pp. 104-113, Advances in Cryptology – Crypto
’96 Proceedings, Lecture Notes in Computer Science Vol. 1109, N. Koblitz ed., Springer 1996.
[KJJ99] P. Kocher, J Jaffe, and B. Jun, “Differential Power Analysis,” pp. 388-397, Advances in Cryptology – Crypto ’99 Proceedings, Lecture Notes in
Computer Science Vol. 1666, M. Wiener ed., Springer 1999.
[M13] J. A. Muir, “A Tutorial on White-Box AES,” pp. 209-229, Advances in Network Analysis and its Applications, Mathematics in Industry 18, 2013.
[PQ03] G. Piret and J.-J. Quisquater, “A differential fault attack technique against SPN structure, with application to the AES and KHAZAD,” pp. 77-88,
Cryptographic Hardware and Embedded Systems – CHES 2003, Lecture Notes in Computer Science Vol. 2779, C. Walter, C. Koc, and C. Paar eds.,
Springer 2003.
[W15] M. Wiener, “Applying Software Protection to White-Box Cryptography,” Proceedings of the 5th Program Protection and Reverse Engineering
Workshop, Los Angeles/Universal City, CA, 2015.

